skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aydin, Duygu Yilmaz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When exposed to an ascending flow, pendant drops oscillate at magnitudes determined by windspeed, drop diameter, and needle diameter. In this study, we investigate the retention stability and oscillations of pendant drops in a vertical wind tunnel. Oscillation is captured by a high-speed camera for a drop Reynolds number Re = 200–3000. Drops at Re ≲ 1000 oscillate up to 12 times the frequency of drops with high Re. Increasing windspeed enables larger volume drops to remain attached to the needles above Re = 500. We categorize drop dynamics into seven behavioral modes according to the plane of rotation and deformation of shape. Video frame aggregation permits the determination of a static, characteristic shape of our highly dynamic drops. Such a shape provides a hydraulic diameter and the evaluation of the volume swept by the oscillating drops with time. The maximum swept volume per unit drop volume occurs at Re = 600, corresponding to the peak in angular velocity. 
    more » « less